

Magnetocaloric Hydrogen Liquefaction (MCHL)

Eggert Bruno G.F., Lunde Vilde, Knudsen Kenneth, Helgesen Geir, Frommmen Christoph Department for Hydrogen Technology, Institute for Energy Technology (IFE), P.O. Box 40, NO-2007 Kjeller Corresponding author's e-mail address: Bruno.Eggert@ife.no

OPHYDROGENI Hylical *OPH2SCience*

What is it all about?

Hydrogen is commonly liquefied by gas compression-expansion. Our goal is to replace this process for temperatures <100 K with a magnetic refrigeration cycle.

P pressureH magnetic fieldT temperature

Gas compression-expansion cycle

Gas compression-expansion

- **High** energy demand (10-12 kWh/kgH₂) •
- High CAPEX and OPEX
- Big and complex installation
- Suffers from "economy of scale"

Magnetic refrigeration cycle

MCHL technology

- **Low** energy demand (5-6 kWh/kgH₂)
- Low CAPEX and OPEX
- More efficient at smaller scale(1-5 TPD)
- Flexible to adopt to fluctuating load

What are the challenges?

Immature technology (needs 7-10 years to achieve market penetration).

The use of critical raw materials (rare earth elements) and cobalt.

Insufficient heat exchange. Needs to be improved to reach full potential.

What are we doing in HYDROGENi?

Replace critical raw materials

Improve heat exchange

