Development of a novel hydrogen liquefier prototype using the magnetocaloric effect of holmium

M. Straßheim^{1,2}, E. Bykov¹, C. Salazar Mejia¹, J. Wosnitza^{1,2}, T. Platte³, C. Fujta³, T. Sittig³, M. Fries³, A. M. Döring⁴, K. Skokov⁴, O. Gutfleisch⁴, and T. Gottschall¹

¹ Dresden High Magnetic Field Laboratory (HLD-EMFL), HZDR, Germany

- ² Institut für Festkörper- und Materialphysik, TU Dresden, Germany
- ³ MAGNOTHERM, Germany

⁴ Technical University Darmstadt - Functional Materials, Germany

DRESDEN concept HELMHOLTZ ZENTRUM **DRESDEN** ROSSENDORF

> **HyLICAL** Ε European Magnetic Field Laboratory

Clean Hydrogen Partnership

Magnetocaloric cooling

Adiabatic process:

 $0 = dS_{total} \longrightarrow dS_{magnetic} = - dS_{lattice}$

- Candidates should have high magnetic entropy change and high adiabatic temperature change
- Potentially higher efficiency at very low temperatures in comparison to Hampson-Linde cycle
- Many known candidates for high and low temperatures

Direct measurements of ΔT_{ad} in pulsed fields

Adapted from S. Taskaev et al., Key Eng. Mater. 833, 176 (2020)

Magnetocaloric effect in Holmium

- Covers the relevant range of 20...80 K with "plateau" of magnetocaloric effect due to several magnetic transitions
- effect to the investigated polycrystal

Conclusion

- Investigated holmium for hydrogen liquefaction
- Investigated fluid dynamics of gases through a packed bed
- Started designing a cryogenic magnetocaloric-cooling device

HZDR · Dresden High Magnetic Field Laboratory (HLD-EMFL) Marc Straßheim · m.strassheim@hzdr.de · www.hzdr.de

This work was supported by the Clean Hydrogen Partnership and its members within the framework of the project HyLICAL (Grant No. 101101461).

